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Abstract: The article describes numerical method of physical gas flow parameters 

recovery at accidents investigation, which are conditioned by guillotine rupture of 

a pipe in gas trunkline and distribution pipeline systems. The information about 

full-scale measurements of time dependences of gas flow parameters at defined 

points inside pipelines system and at its boundaries is the base for recovery 

implementation at numerical investigation of accidents. Numerical recovery is 

carried out by defining and solving a special identification problem. 
 

Keywords: gas trunkline rupture, identification problem, numerical gas flow 

recovery. 
 

Streszczenie: W artykule opisano numeryczną metodę odtworzenia 

parametrów rzeczywistego przepływu gazu podczas badania wypadków,  

w których nastąpiło przerwanie rury na całym obwodzie. Metoda może być 

stosowana zarówno dla rurociągów magistralowych, jak i dla rur 

w sieciach dystrybucyjnych. Informacje o pełnej skali pomiarów zależności 

parametrów przepływu gazu w określonych punktach wewnątrz systemu 

rurociągów jako funkcji czasu stanowią podstawę do numerycznego 

odtworzenia tych przebiegów w przypadku badania i analizy wypadków. 

Odtworzenie numeryczne jest wykonywane poprzez zdefiniowane 

i rozwiązanie specyficznego zadania identyfikacyjnego.  

Słowa kluczowe: pęknięcie gazowego rurociągu magistralowego, zadanie 

identyfikacji, numeryczne odtworzenie wartości przepływu gazu 
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1. Problem statement 

At numerical analysis of accidents we face the necessity of physical parameters 

recovery of comersial gas flow along gaspipeline systems [1–3]. Limited field 

measurement data is the characterstic feature of such problem statement. In this 

case it is reasonable to formalize the problemin the form of generalized 

mathematical identification problem of adequate space-time distribution of actual 

flow parameters of transported gases based on full-scale measurements in  

a substantially limited number of locations.  

It is initially assumed in this paper that the length and location of analysable system 

allows for using the one-dimensional setup for the gas network gas flow recovery 

problem [4].  

In the modeling commercial gas is treated as homogeneous multi-component viscous gas 

mixture of known composition with specified heat transfer, physical and mechanical 

properties. Equations of state for this mixture are assumed to be known.  

Basic modes of gas transportation at accident are assumed to be transient and non-

isothermal. However, for the purpose of requrment lowering of the used 

computational resourses and increasing of the efficiency of calculation results 

obtaining, we here adopt the assumption that actual dynamics of simulated gas 

flow permits spreading of basic assumptions of well known quasi-steady-state flow 

change method to computational algorithms of transport flow recovery at 

discretization of the analyzable time interval [4].  

In the frame of described above problem statement it is reasonably to use methods 

from [4–9] in order to obtain numerical estimates of space-time distribution of 

pressure, density, temperature and gas flow rate transmitted along pipeline system. 

The listed above works contain practical algorithms description of numerical 

analysis of gas flow along branched and circular graded pipelines that 

characterized by sufficient wide range of properties in the accuracy and adequacy 

of obtained results with respect to actual gas-dynamic processes. This gives an 

opportunity to optimize the choice of the method of flow parameters calculation on 

the basis of actual requrments producible to the efficiency of accident investigation 

and realiability of obtained results. However, the problem statement of such choice 

realization goes beyond the scope of this paper and do not considered here. 

For the 1D problem statement, one can assume that field measurements of gas flow 

parameters are taken at fixed points located both at the boundaries of the pipeline 

system (boundary points) and along the length of the pipelines (internal points). 

Boundary points are generally used to take measurements of pressure, temperature 

and mass flow rate of gases (considering their composition), and internal points are 

used to measure gas pressure. Ambient temperature is measured at points spaced 

apart from each other at considerable distances. Results of such measurements may 

contain random and systematic errors. 

Thus, using the above background information, we should formulate and describe 

special identification problem statement, allowing us to recover the space-time 

distribution of actual gas flow estimates at accident for the given time interval   
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at known methods of numerical analysis of transient and non-isothermal gas flow 

parameters and deficiency of full-scale measurements. It is also necessary to 

propose the approaches to numerical solution of formulated identification problem. 

2. Formalization of the transport flow recovery problem 

We introduce the notion of Identification Point (IP). In our case, the IP is an inner 

or boundary point in the computational model of the pipeline network of interest, in 

which full-scale measurements of pressure of the transported gas mixture are taken 

over a given time interval  . The choice of gas mixture pressure as an 

identification parameter is explained by the fact that pressure histories in real 

pipeline systems are determined today more accurately than temperature or flow 

rate parameters. The example of actual and potential IPs distribution in the 

Moscow Gas Ring (MGR) model is presented in Fig. 1. In this picture the IPs 

location are denoted by a yellow circle. The IPs numbering corresponds to its 

conventional identifier, which are used at modeling.  

In the course of mathematical identification, calculated and measured estimates of 

gas mixture pressure histories for the entire set of IPs distributed across the 

computational model of the pipeline network should be fitted as closely as 

possible. The preferable location of each IP is determined subject to the following 

requirement: any considerable change in gas dynamic parameters of pipeline 

system operation should be accompanied by considerable changes in gas mixture 

flow parameters actually measured at this point. The distribution of IPs in the 

computational model of the pipeline system should be as uniform as possible.   

Under mathematical identification theory the close fit between corresponding 

calculated and measured pressure histories in the general case should be provided 

in three senses [10]: close fit between two functional relations (in essence, between 

the first derivatives of the functions being compared); close fit between two 

functional relations in metric 
2

2 2
1

L ,
n

n
i

i

y R



  Y Y ; close fit between two 

functional relations within their uniform deviation, i.e. in the metric 

0 0
1

L max , n
i

i n
y R

 
  Y Y . 

Real pipeline systems contain a number of branches, through which transmitted 

fluids enter or leave the system. Inlet branches that supply the gas mixture into the 

simulated pipeline system will be designated conventionally as “supplier 

branches”, and outlet branches, as “consumer branches”. In the first approximation, 

it is assumed that each network branch cannot change its purpose over a given time 

interval  , i.e. a gas supplier cannot become a consumer and vice versa.  
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At accident investigation the pipeline ruptured zone can be conventionally trated as 

new nonauthorized concumer branch. 

In practice, there is generally a shortage of instruments at outlet boundaries of the 

gas pipeline system of interest. In this case, a number of consumers having no flow 

rate meters joint declare their gas consumption based on regulatory documents. All 

the foregoing (together with real instrument errors and encountered cases of 

artificial under-/overdeclaration of gas mixture volumes transported through the 

pipeline system) results in arithmetic discrepancies between estimated volumes of 

gas supply made by consumers and suppliers. This situation should be taken into 

account in gas flows recovery. 

 

 
Fig.1. Basic diagram of actual and potential IPs distribution  

in the MGR pipelines  
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Given all the reasoning above, the special problem of mathematical identification 

can be stated using conditional optimization: 

 
   

scenario, , min ,
nt t R

t F t
 

   
Z Π

Z                             (1) 

where  scenario, ,t F t  Z  is a formal representation of the target function; t  is 

time; scenarioF  is the flag of involved computational scenarios of the identification 

problem;  tZ  is a vector function of controlled boundary conditions (BC). In our 

case, components of the vector function  tZ  are time functions of pressure and 

mass flow rates of the gas mixture at outlet boundaries of the gas pipeline system, 

i.e. components of boundary conditions. They are distributed in the following way: 

gas mixture pressures at  u u l  outlets of supplier branches and at  s s k  

outlets of consumer branches, where l  is a given number of supplier branches, 

through which the gas mixture flows into the gas pipeline system over the time 

; k  is a given number of consumer branches through which the gas mixture leaves 

the gas pipeline system over the time  ; mass flow rates of the gas mixture at 

 l u  outlets of  supplier branches and at  k s  outlets of consumer branches. 

Hence, the total number of variable components in the boundary conditions is 

n l k  . In production simulations, the search for boundary conditions at outlet 

boundaries of a number of branches during identification can be replaced with 

rigidly set Dirichlet boundary conditions in the form of combinations of known 

time functions of measured mass flow rates and pressures of the gas mixture. This 

reduces the number of variable components in the boundary conditions, n l k  . 

Note also that as Dirichlet boundary conditions for temperature and relative mass 

fraction one can use predefined time laws for respective measured values.  

At accident investigation specialists fase the necessity of gas flow recovery under 

three basic assumptions [4]: estimated volumes of gas mixture supply declared by 

suppliers and consumers contain errors (the Full Distrust computational scenario); 

only supplier-declared estimated volumes of gas mixture supply are credible (the 

Trust-in-Supplier computational scenario); only consumer-declared estimated 

volumes of gas mixture supply are credible (the Trust-in-Consumer computational 

scenario). The flag of the computational scenario assigned to the identification 

problem scenarioF  takes the values of 11, 12, 13, 21, 22, 23, 31, 32 and 33 in series, 

allowing us to choose various modifications of the problem statement (1). The way 

of using the set of values assigned to the flag scenarioF  will be demonstrated below 

(see (2) and (4)).  
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The kernel  scenario, ,t F t  Z  of the target function of the problem (1) subject to 

the requirement that calculated and measured values should fit together in the three 

above senses can be formalized as follows:  

 

   

         

   

scenario

IP IP
calc meas scenario

2

IP IP IP IP
calc meas meas calc scenario

I II 2

IP IP
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2

, ,

, ,if 21;

, , ,if 31;

, otherwise,

t F t

t t t F

t t t t t t F

t t t
t t

   


    



           

  

     

Z

p Z p

p Z p p p Z

p Z p

 (2) 

where   IPIP
calc ,

Mt t R  p Z  is a vector function simulation the time variation of 

calculated estimates of gas mixture pressure at the IP; IPM  is the number of IPs; 

  IPIP
meas

Mt Rp  is a given vector function describing the time variation of 

measured estimates of gas mixture pressure at the IP;   differenceI,II , 1, ,
v

v M  is 

symbolic representation of IPs pairs that determine the controlled natural and 

virtual pressure drops in the gas mixture, differenceM  is the number of given pairs 

of IPs. The values of components of the vector function  IP
calc ,t t  p Z  is defied by 

numerical analysis of gas flow parameters along pipeline network under 

consideration for the known initial conditions and defined Dirichlet boundary 

conditions, containing all the components of the vector function  tZ . In this case, 

for carrying out stated above analysis, we strongly recommend giving preference to 

high-accuracy methods of flow modeling along pipelines, suggested in [4]. 

The first form of the kernel of the target function (i.e. for scenario 21F   in (2)) in 

the problem statement (1) expresses the requirement that calculated and measured 

estimates of gas mixture pressure should be close in the second and third senses 

(see above). In practice, striving for the fulfillment of this requirement makes it 

possible to obtain a correct solution in the presence of random errors in flow 

pressure measurements aggravated by single instrument failures. The idea of 

second form of the target function constructing (as scenario 31F   in (2)) belongs to 

Vladimir V. Kiselev [11]. First of all it is oriented on the compensaton of IPs 

shortage, which is frequently experienced in practice. Meanwhile in order to define 

natural and virtual gas mixture pressure differences controlled during minimization 

of (1), a generalized set of IP pairs is established in advance. The third form of the 

target function was proposed to enable a closer fit between calculated and 



Vadim Seleznev., Aleksey Komissarov, Irina Skiteva 
 

 

 
51 

measured estimates of gas mixture pressure in the first and third senses (see above). 

It is used for obtaining a correct solution in the presence of systematic errors in gas 

mixture pressure measurements and single instrument failures.  

Now, let us proceed to discussing numerous constraints in (14): 

 

           
     

     

   
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calc
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, , 1, ;

, , 1, ;

, , ,

n

q qs ss

q qs ss l

t t t R t t t

g t q t t f t s l

g t q t t f t s l l k

unequality F t



    

            

              



Z Z g Z f

Z

Z

Z

 (3) 

 

where   nt Rg  and   nt Rf   are given vector functions that establish limits in 

simple constraints on the vector function of controlled boundary conditions based 

on structural and operational features of the simulated pipeline system,    t tg f ; 

  l k
q t R g  and   l k

q t R f  are given vector functions  that establish limits in 

constraints providing a-priory preservation of the defined purpose of the branch 

over the time interval   (i.e. a gas supplier cannot become a gas consumer and 

vice versa, see above),    q qt tg f ;  supplier
calc , lt t R  q Z   is a vector function, 

simulation the time variation of calculated estimates of gas mixture mass flow rate 

at outlets of supplier branches;  consumer
calc , kt t R  q Z  is a vector function that 

describes the time variation of calculated estimates of gas mixture mass flow rate at 

outlets of consumer branches;   scenario, ,unequality F t Z  is is a formal 

representation of an additional limiting inequality. The values of vector function 

conponents  supplier
calc , lt t R  q Z  and  consumer

calc ,t t  q Z  are defied by numerical 

analysis of gas flow parameters along pipeline network under consideration for the 

known initial conditions and defined Dirichlet boundary conditions, containing all 

the components of the vector function  tZ . As in the above stated case we advise 

to use high-accuracy methods [4]. For the components of above stated vector 

function of gas flow rate that suppliers have the following law of signs is true: 

 supplier
calc , 0

i
q t t     

Z  , the gas mixture flows into the modeled pipeline system, 

1,i l . The law of signs for components of the vector function  consumer
calc ,t t  q Z  
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has the form: if  consumer
calc , 0

i
q t t     

Z , then the gas mixture moves from the gas 

pipeline system to the consumer, 1,i k . The second and third inequalities in the 

list of constraints (3) make it possible to reliably control the variations in gas mass 

flow rates at outlets of all system branches irrespective of whether these functions 

are components of the vector function of controlled boundary conditions, or they 

are purely computational parameters needed for simulations of gas mixture flow 

through the pipeline system. The formal representation of the inequality 

  scenario, ,unequality F t Z  in (3) can be expanded in the following way: 

  

     

   

scenario

supplierconsumer supplier
meas meascalc

1 1 1
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1 1

, ,

, ,
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k l l

j ii
j i i

l k

i j
i j
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q t dt q t t dt q t dt

q t dt q t dt F

  

 


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q Z q

q Z q

 (4) 

 

where  consumer
meas

kt Rq  is a given vector function that describes the time 

variation of measured or declared estimates of gas mass flow rates at outlets of 

consumer branches;  supplier
meas

lt Rq  is a given vector function that describes the 

time variation of measured or declared estimates of gas mass flow rates at outlets 

of supplier branches; 0   is a predefined small quantity that establishes the 

minimum difference between calculated and measured mass flow rates in the 

second sense of close fit (see above); discrep 2Q  , discrepQ  is a predefined 

empirical constant that corresponds to minimum value of module of accumulated 

discrepacy in gas supply estimates, which has significant practical importance at 

analysis of gaspipeline network under modeling. The following law of signs is true 

for components of the vector function  consumer
meas tq : if  consumer

meas 0
i

q t  
 

, the 

gas mixture moves from the gas pipeline system to the consumer, 1,i k . The law 

of signs for the components of above stated vector functions of gas flow rate (that 
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suppliers have) has the form:  supplier
meas 0

i
q t  
 

, the gas mixture flows into the 

modeled pipeline system, 1,i l . 

 

3. On the special identification problem solution 

 

Today, it does not seem possible to solve the problem (1–4) in such a statement 

using computing facilities available to a wide range of pipeline industry specialists. 

However, as mentioned in Sec.1, actual operation dynamics of most commercial 

gas trunklines renders it possible to use basic allowances and assumptions of the 

quasi-steady-state flow change method. In this connection, it is suggested that the 

time interval of interest   be conventionally divided into  1tN   time layers 

separated from each other by a given uniform step t . The 0m   layer will 

correspond to the lower boundary of the time interval t , and the tm N  layer, to 

its upper boundary. In order to improve the credibility of estimated gas mixture 

supply to consumers, when using the quasi-steady-state (for one time layer) 

problem statement, one should give consideration to the effect of product buildup 

in the pipes of the simulated pipeline system. For each time layer, the gas mixture 

buildup varies over the preceding time interval  . A practical way of accounting 

for this buildup was proposed by V. Kiselev [11].  

For numerical solution of the problem (1–4) at the m -th time step the well-known 

method of modified Lagrange functions is suitable [12]. The successive solution of 

the problem (1–4) at the  1tN   time steps makes it possible to recover the agreed 

Dirichlet boundary conditions for all the pipeline system boundaries within the 

chosen computational scenarios. Upon their recovery based on the discrete values 

obtained, it is reasonable to interpolate the boundary conditions. Cubic spline 

interpolation performs well in this case. 

 

4. On the criterion in the comparative analysis of finding solutions 

 

The above approach to the numerical recovery of gas dynamic parameters of gas 

mixture flows through pipeline systems based on full-scale measurements gives a 

number of alternative solutions. This is associated, first of all, with a set of 

computational scenarios involved and ambiguity of building the vector function of 

controlled boundary conditions. In order to choose the best approximation of 

space-time distributions of real flow parameters, one should propose a criterion to 

compare the calculated gas dynamic parameters. Such a criterion can be developed 

by quantitative assessment of the fit between calculated and measured parameters 

of gas mixture pressure vs. time at each IP. For this purpose, let us introduce the 

so-called identification factor in the first sense for the j -th IP:  
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   1 IP IP
calc meas IPIdent_Level_1 , 1, .j

j

p t p t dt j M
t t



 



 
   

                     (5) 

The identification factor in the second sense in our case is written as: 

   1 IP IP
calc meas IPIdent_Level_2 , 1, .j

j
p t p t dt j M



 



                               (6) 

For simultaneous assessment of identification level in the first and second senses, 

the law of conventional coloring of IPs is used subject to achieved in its 

neighborhood identification level. One will take the small neighborhood of j -th IP 

for the time interval   be at high identification level in the first and second 

senses, if at least one of the following conditions is satisfied [4]: 1) 
min_1
BlueIPIdent_Level_1 j C ; 2) min_2

Green IPIdent_Level_2 j C ; 3) 

max_1
BlueIPIdent_Level_1 j C  and 

min_2 min _2
Green IP BlueIPIdent_Level_2 jC C  , where 

min_ 2
Green IPC , 

min _1
Blue IPC , 

max _1
Blue IPC ,  

min _ 2
Blue IPC   are given empirical constants. In order to 

make the practical results more demonstrative, the IP of interest will be denoted by 

a green circle because of the law of coloring usage in the IP layout diagram and the 

identification level in its neighborhood will be called green identification level. In a 

similar situation, the identification level is considered satisfactory in the first and 

second senses, if at least one of the following two conditions is satisfied [4]: 1) 
max _1
BlueIP Ident_Level_1jC   and 

min_2 min _2
Green IP BlueIPIdent_Level_2 jC C  ; 2) 

min _1 max _1
BlueIP BlueIPIdent_Level_1 jC C   and 

min _2 max _2
BlueIP BlueIPIdent_Level_2 jC C  , 

where 
max _ 2
Blue IPC  is given empirical constant. In this case, the IP of interest in the IP 

layout diagram will be denoted by a blue circle (blue identification level). 

Achievement of the identification level disputable in the first and second sense 

(orange identification level) is characterized by satisfying simultaneously the 

following two conditions [4]: 
min _1 max _1
BlueIP BlueIPIdent_Level_1 jC C   and 

max _2
BlueIP Ident_Level_2 jC  . As a rule, such IPs display a systematic error in gas 

mixture flow pressure measurements. Such IPs need to be carefully analyzed by 

specialists operating the simulated pipeline system. If the above combinations of 

conditions are not satisfied, a conclusion is drawn that there is no identification in 

the first and second sense in the small neighborhood of this IP for the time interval 

 . In this case, the IP will be denoted by a red circle in the IP layout diagram, 

and the lack of identification in its neighborhood corresponds to the red level.  

Analysis of the fit between time histories in the first and second sense does not 

allow us to account for the influence of individual discrepancy spikes in 

measurement results on the assessment of the achieved identification level to the full 
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extent. Therefore, additional analysis of the fit between calculated and measured 

functions in the third sense is required in the neighborhood of the j -th IP: 

       

max _1
BlueIP

IP IP IP IP
calc meas calc meas

0

Ident_Level_3

0, if Ident_Level_1 ;

sup otherwise.

j

j

j

C

p t p t p t p t




 


 
   



   (7) 

According to the method of comparison of calculated gas dynamic parameters 

described here, the identification level established in the first and second senses 

should be lowered [4]: from green to blue, if 
sup_3min_3
IPGreen IP Ident_Level_3 jC C  ; 

from blue to orange, if sup_3min _3
IPBlueIP Ident_Level_3 jC C  ; from orange to red, 

when 
sup_3min _3
IPOrangeIP Ident_Level_3 jC C  ; from any color to red, if 

sup_3
IP Ident_Level_3 jC  , where min_3

Green IPC , 
min_3
BlueIPC , min_3

OrangeIPC , 
sup_3
IPC  are 

given empirical constants. The procedure of lowering the identification level for 

each IP can be done only once, i.e. successive lowering of the green level to the 

blue one, the blue one, to the orange, and the orange, to the red is not permitted.  

The overall assessment of the actual identification level achieved by the r -th 

computational gas dynamic mode of actual gas mixture flow through the pipeline 

system of interest over the given time interval is done using the formula: 

 
min_ 2
Green IP

green green blue blue orange orange CFD

green IP

P _ Id

P _ Id P _ Id P _ Id , 1, ,

r

r r r
C

S S S r V
S M



   
      (8) 

where  

 
Green IP

min_ 21
green Green IP

1

P_ Id max ; Ident_Level_ 2

rL
r r

j
j

C



  ; 

Orange IP 1

orange
1

P _ Id Ident_Level_ 2

rN
r r

j
j





 
  ; 

 
Blue IP

min_ 21
blue BlueIP

1

P_ Ident max ; Ident_Level_ 2

rK
r r

j
j

C



  ; greenS , blueS , orangeS  

are scalar weight factors used when establishing quantitative indices of the 

identification level achieved,  green blue orange 0S S S  ; CFDV  is the number 

of obtained computational gas dynamic modes; Green IP
rL  is the number of green 

IPs for each r -th computational gas dynamic mode (if Green IP 0rL  , then 

greenP_ Id 0r  ); Blue IP
rK  is the number of blue IPs for each r -th computational 
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gas dynamic mode (if BlueIP 0rK  , then blueP_ Id 0r  ); OrangeIP
rN  is the number 

of orange IPs for each r -th computational gas dynamic mode (if OrangeIP 0rN  , 

then orangeP_ Id 0r  ). 

The solution to the problem of numerical recovery of gas flows in the simulated 

pipeline system will be a unique identified gas flow (IGF) that a-priory satisfies the 

defined requirements (constraints) and is compliant with the pipeline system’s real 

physics of accident-free operation and characterized by the highest value of the 

quantitative index of identification level (8). Thus, the relation 

 
CFD

CFD_ID
1

P_ Id max P_ Idr
r V 

 , where  CFD_ID 1,r  is the index, will be true 

for the IGF. It should be emphasized that the IGF status is assigned to the gas 

dynamic flow developed only if the following inequality is true for the 

corresponding prevalence factor of green, blue and orange IPs CFD_IDF :  

 CFD_ID CFD_ID CFD_ID1
CFD_ID IP Green IP OrangeIP CFD_IDBlueIPF M L K N C    , 

where CFD_ID 0C   is an empirical constant, the value of which is chosen based on 

the experience of doing simulations with the recovery method described here. 

Otherwise, a conclusion is drawn that the required identification level was not 

achieved and the IGF was not found, i.e. the recovery problem for the gas flows in 

the gas pipeline system was not solved. 

 

5. Results of practical application 

 

Efficiency of the method of numerical recovery of gas flows in trunkline systems 

proposed in the paper was demonstrated in 2008–2011 in production simulations at 

OOO “GAZPROM Mezhregiongaz Moscow” within the “Alfargus/Mosregiongaz” 

computer knowledgeware. The Moscow Gas Ring (MGR) has a total length of over 

200 km and more than 80 consumer branches. The flow was recovered at 95 IPs, 

which were relatively uniformly distributed over the gas pipeline ring (see Fig. 1). 

Computer knowledgeware «Alfargus/Mosregiongaz» was used for numerical 

investigation of accident development mechanism, stipulated by pipeline rupture in 

Moscow (Ozernaya Street) in May, 2009. Examples of the pipeline system’s gas 

flow parameters and directions of recovered gas flow in MGR are presented in Fig. 2. 
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a)                                                           b) 

 

Fig.2. Example of transport flow recovery in southwest part of MGR at accident 

(temporal section) а) schematic representation of transported flows with its actual 

intensity; b) pressure and volumetric gas flow rate distribution along the pipeline 

length of analysable MGR segment 
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