FORECASTING OF SAFETY TRANSPORT
BY EXTREME STATISTICS

PROGNOZOWANIE BEZPIECZEŃSTWA
OBIEKTÓW TRANSPORTOWYCH
METODAMI STATYSTYKI EKSTREMAŁNEJ

Arefyev Igor¹, Volovik Aleksandr², Klavdiev Aleksandr²

¹Akademia Morska w Szczecinie,
²Минерально-сырьевой университет «Горный» (Sankt-Petersburg)
e-mail: i.arefyev@am.szczecin.pl, kss59@mail.ru

Abstract: Recently, the transport problem is acute to minimize accidents and
disasters, caused by the failure of the functional elements. Today it is still not
a fully developed theory of the solution of such problems. The authors propose an
approach to perform this task, based on the methodology of extreme statistics and
information Janes principle. Example given in the article and the calculations
prove this possibility, up to an extreme level of statistical sampling, when it
reaches capacity. The method allows for a decision on a sample survey, when the
nature of the distribution is not known anything other than the expectation of
a random variable.

Keywords: security, transport, statistics, accident, method

Streszczenie: W ostatnim czasie w dziedzinie transportu pojawiło się pilne zadanie
sprowadzenia do minimum występowania wypadków i katastrof, których przyczyną
są awarie elementów funkcjonalnych. Obecnie jeszcze nie sformułowano
rozwiniętej teorii rozwiązania takich zadań. Autorzy proponują sposób
rozwiązania postawionego zadania na podstawie metodologii statystyki
ekstremalnej i zasady informacyjnej Jaynesa. Przedstawiony w artykule przykład
i obliczenia dowodzą takiej możliwości, do ekstremalnego poziomu statystycznego
wyboru włącznie. Metoda pozwala realizować podjęcie decyzji według wybranych
obserwacji, gdy o charakterze podziału nie wiadomo nic oprócz wartości
oczekiwanej wielkości losowej.

Słowa kluczowe: bezpieczeństwo, transport, statystyka, mała próbka, statystyka
ekstremalna
1. Introduction

By the beginning of XXI century in the theory of reliability there were two scientific directions having the single mathematical apparatus of mathematical statistics, but different objects of the analysis: reliability of technical means and reliability of man-machine systems.

In the first case methods and solutions of reliability increase, operation efficiency and wear resistance of technical systems and elements, devices, widgets are considered. Search of decisions in information about condition of such objects quite reasonably is based on statistical selections, classical methods of the theory of probability. Existing techniques of reliability increasing, scheduled preventive surveys for widgets (systems) of different function quite satisfies for tasks of forecasting of their safe operation.

Otherwise case is in the situation of man-machine systems. The final decision by an assessment and change of an object condition, its characteristics in the course of accomplishment of criterion function belongs to the person operator. Here the leading role is played by the current information received from devices and monitoring systems. Collection of statistics on the current information emergency (not standard) nature can’t be almost provided by big massifs. Most often this information either is single, or belongs to the class of "small selections". Such provision entirely belongs to transport systems [1,7].

Statistical information on the incidents connected with transport objects, is limited and heterogeneous. Such events are, as a rule, single or seldom repeat. Therefore the safety assessment on transport is carried out at high-quality level as information for its quantitative assessment existing mathematical apparatus has absolutely not enough. Therefore, the theoretical base is necessary for development of evaluation methods of reliability of objects in conditions of "small selections" and "single selections". These methods shall reflect specifics of operation of systems of the increased danger to which all mobile objects belong, but first of all – transport. Set of such methods we will determine the term "extreme statistics". Object of researches of extreme statistics are the information massifs constructed according to the statistics "small selections" and result – decision making methods, основанные on the analysis of single information.

2. Information security of transport object

Railway vehicles, cargo handling machinery, elevators, etc. on technology of accomplishment of the tasks are objects of the increased danger. On transport classification of refusals is structured on nature of consequences:
- incident (catastrophic crash, accident);
- incident (the non-local refusals, fires, switching off of engines in the course of movement or maneuver, failures of aggregates and the systems which don't have duplications);
- forced interruption of movement (stopping, landing, drift).
However, the established reason of accidents and catastrophic crash on transport the last decades, is distributed absolutely unevenly [8]:

- 98% are carried on the person operator (the pilot, the navigator, the driver),
- 2% fall on technical means (refusal, defect).

The specified provision is quite explainable that technical devices process and implement information on the set algorithms and the programs, based on standard or earlier received statistical results. That’s why the person is forced to make operational decisions in extreme conditions, making use of experience of own knowledge and intuition. Such decisions are based on information on refusals of technical means, including automatic equipment, or in case of an unforeseen situation. Therefore, the leading role in decisions of the operator is played by very limited information on the similar (similar) cases which have occurred earlier. At the same time, statistical information on incidents (accidents, catastrophic crashes) on transport is single even on the long periods measured on years. Therefore situation analysis and decision making should be carried out in the conditions of extremely limited information [5,6].

Exactly here the trust to justification of the percentage ratio of the reasons of accident rate stated above on transport is lost. It isn't difficult to see that if technical elements (engines, navigation devices, automatic complexes, fire means, etc.) are in working condition, information from them has static nature and doesn't demand from the operator special (not standard) decisions on change of characteristics of movement. Any acceptable deviations are identified and eliminated.

Absolutely other situation arises in case of refusal of these elements in the course of the movement, having consecutive or avalanche nature. Such information on a condition of object and its elements is accidental and the extremely rare, the standard algorithms of decisions pledged in automatic equipment, can't identify it as their models were based on big selections of possible refusals of elements and technical complexes. The obtained operational data appear on "the ends of statistical distributions". Models of such cases can be constructed only when using the statistical device based on extremely small number of events [1,4].

So there is a task of “information security” of transport object: with set confidential probability to give an assessment of border of a safe condition of an element (a complex, the device) in the course of its operation.

There are two directions of possible decisions:

- development of the methods is necessary for a quantitative assessment, giving the chance to determine reliability of elements by small number of supervision with required reliability;
- the methods which are adequately describing limiting areas of distributions on limited information are necessary for an interval assessment.

Determination "small selection" is so far debatable [1,5,7]. In literature its various interpretation meet: insignificant, small, extremely small, single, etc. Let's accept the \(n = 30 \) abroad between concepts "small" and "regular (big)" selection [6]. Authors consider as the basis for this statement result of comparison of
t-distribution with normal distribution. Even in the visual analysis of tabular values it is possible to notice that this approach becomes quite fast, beginning names with \(n = 30 \) and above [7]. Then we will accept selections in amount less than 30 supervision for "small".

The analysis of a condition of objects on small number of supervision are required not asymptotic methods based on extreme distributions. This direction in the decision making Theory still is still a little developed. Complexity of statement and the solution of tasks of the best estimates in case of small quantity of a statistical material depends on specific type of distribution, selection amount. The statistical material is created of rare data, characteristic for the extreme conditions meeting on transport. Here not really to receive the authentic decision by the classical method, based on limiting distributions It is offered to solve this problem based on the information approach considering the principle of a maximum of uncertainty [3,4].

3. Method of the statistical assessment of information security of object

Uncertainty of reasoned decisions in extreme situations of behavior of objects because of failures of their vital technical devices and complexes sets the task developments of imitation methods of an adequate assessment and forecasting of their condition. This conclusion is especially actual for transport systems. They containing in a basis of the work the moving objects, constituting the increased danger on nature of accomplishment of criterion function.

At the heart of such device must be the complex of the mathematical means having two main properties:

1. opportunity to operate with statistical information of accidental and single nature on refusals of objects,
2. most full to consider uncertainty of statistical data on reliability of elements (devices) when only the population mean of emergence of their refusals is known.

The most preferable in this case is the information approach using the principle of a maximum of uncertainty (the Jaynes principle), based on consideration of entropy of Shannon. This approach is least sensitive to initial assumptions and generally allows to consider any number of located information [6].

The principle of a maximum of uncertainty (entropy maximum) gives the grounds to consider that the greatest reliability probabilities which maximize uncertainty when accounting all acquired information will possess. Measure of uncertainty there is an entropy. Important difference of the principle of a maximum of uncertainty is possibility of receipt of estimates of aprioristic distribution in information situations for which various restrictions in the form of the probability measure, separate moment characteristics, etc. [7] are known. Thus, they can be provided in the form of equalities and inequalities. From the mathematical point of view, when using the principle of a maximum of uncertainty, the task of such restrictions leads to the solution of classical and non-classical tasks of optimization (tasks on extreme point).
The basis for carrying out the analysis were the empirical supervision connected with accidents of ocean and river crafts in 2010-2012 [8]. Let’s consider empirical density of distributions of the smallest (extreme) value in the selections of various amount received by imitating modeling from population with the exponential distribution law, the most characteristic for transport systems [2]. Their smoothed type is provided on Fig. 1.

With increase in amount of selection, other things being equal, distribution of the smallest random variable is displaced to ordinate axis. As theoretical reasons for statement the following reasons serve. Generally, function of distribution of the smallest value in selection in amount looks like [5]:

$$F_{t_{\min}}(t_{\min}) = 1 - [1 - F(t_{\min})]^n$$

and density, respectively

$$f_{t_{\min}}(t_{\min}) = n[1 - F(t_{\min})]^{n-1} \cdot f(t_{\min}),$$

where: $F(\cdot)$ и $f(\cdot)$ – function and density of initial distribution.

Then distribution density of the smallest value in selection of exponential distributed population will be written as follows:

$$f_{t_{\min}}(t_{\min}) = n\lambda e^{-n\lambda t_{\min}},$$

where: $\lambda = \frac{1}{T}$ – parameter of the distribution;

T – The expectation of a random variable t.

Physical sense of a formula (3) that the smallest value of selection is shown with the intensity which is pro rata to its amount. Distribution of the smallest value in selection, generally, the bilateral. However, in the conditions of a solved task us only the left border of expression which characterizes the smallest (extreme) random variable interests. Therefore we set

$$F(T_{\min}) = \frac{\alpha}{2}$$

Then the population mean of T of a random variable will become [6]:

$$\hat{T}_{\alpha} = \frac{\alpha}{2} T,$$

Theoretical T_{α} value under the same conditions will be

$$T_{\alpha} = 2T \left(1 - \sqrt{1 - \frac{\alpha}{2}}\right).$$

In Fig. 2 there is theoretical and asymptotic functions of quantiles of distribution of the smallest random variable from selection exponential - distributed general body.
In the same place it is shown their disparity, increased on 10 for descriptive reasons. It isn't difficult to see that the difference between theoretical and asymptotic values for selection of the minimum amount in almost used range doesn't exceed 3%. Experiment confirmed the sufficient accuracy of a method for an extreme case of amount of selection (Fig. 2).
Thus, the analysis did not reveal the contradictions in the representation of quantile of order statistics in the form of asymptotic dependence (5) when a uniform law, the expression is of sufficient accuracy for practical approximates the relationship (3) in the range of the specified range.

4. Conclusions

For the purpose of safety of movement it is necessary trouble-free for operation both all elements of transport objects, and their systems. It is obvious that absolute elimination of such refusals not really.

Then means of minimization of accidents and catastrophic crashes on the transport which reason are refusals of functional elements, control and management systems are necessary.

This problem belongs to tasks of the Theory of reliability. But its fundamental difference from them that the statistics of refusals on transport belongs to tasks of "small" and "single" selections on long intervals of time.

The approach given in work based on methodology of Extreme statistics, proves basic opportunity solutions of the statistical selection set tasks up to extreme level when its amount reaches size.

Results of the offered method can be used also in case of reasons for safety requirements to technical elements, nodes, designs and control devices of railway vehicles in extreme conditions.

5. References

[6] Ивченко Б.П., Мартыщенко Л.А., Табухов М.Е. Управление в экономических и социальных системах. Системный анализ. Принятие решений в условиях неопределенности (Management in the
Forecasting of safety transport by extreme statistics

Prognozowanie bezpieczeństwa obiektów transportowych...

[8] WWW.techcrash.ru/industrialnye/inge

Prof. dr hab. ing. Igor Ariefiev is a full professor at Szczecin Maritime University. Honored Worker of Higher School of Russia. Author of over 230 scientific and educational works in Polish, Russian and English languages in the leading journals of Russia and Europe, including 11 books. Member of the Editorial Board of the international scientific and technical journals, "Software systems and products", "Geopolitics and Security". Winner of two awards of the Council of Ministers of the USSR (medals ENEA) for the development and implementation of the automated system of management of transport systems and sites. Full Member (Academician) of the International Academy of Informatization of the United Nations, the International Transport Academy, the Academy of Geopolitical Problems. The founder and head of the Section theories, methods and controls at the House of Scientists of the Russian Academy of Sciences. Permanent Chairman of the Scientific Committee of the Annual Russian-Polish conference of young specialists and students in the control of Sciences.

Docent, dr inż. Aleksandr Kladiev, the associate professor at Mineral-Resources University «Gornyj» (Sankt-Petersburg). Having an experience of scientific and pedagogical activity more than 25 years. Objects of researches are organizational and technical systems of different function. In the scientific sphere the area of interests is located in development and deployment of the theory of the system information and statistical analysis and synthesis of difficult systems. Has experience of the management by scientific and pedagogical groups and the organizations, I prepared 3 candidates of science and more than 200 masters and bachelors in the direction the system analysis and management. Is the author of 25 inventions, useful models and more than 100 publications of general-theoretical and applied value. Now develops adaptive technologies of the information and statistical analysis of quality of transport systems.

Dr inż. Aleksandr Volovik, the senior research associate at Scientific Institute. Having an experience of scientific work more than 30 years. Objects of researches are aircraft at various stages of life cycle. The direction of scientific activity covers area of reliability of products and an assessment of efficiency of their application. Is the author of a number of inventions and more than 30 publications having applied value. In recent years actively develops ways of the analysis of statistical data and decision-making in the conditions of limited aprioristic information in relation to reliability of aviation engines.